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SUMMARY

Trend tests are used to assess the relationship between multiple level treatment X and binary response R.
In observational studies, however, there may be a confounder U that is associated with treatment X and
causally related to response R. When the data for the confounder U are not observed, an approach for
assessing the sensitivity of test results to U is provided. Its use is illustrated by examining data from a
study of mutation rate after the Chernobyl accident.
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1. INTRODUCTION

In dose–response studies, the experimental subjects are exposed to one of several dose levels of the chem-
ical compound under investigation. The main objective is to determine whether the response rates increase
with the dose levels. The data from a typical dose–response study can be summarized in a single 2 × J
contingency table (Table 1). Here x j , j = 1, . . . , J are the scores assigned to the J levels of the treatment
(dose), where x1 is the minimum level or the level for the control group. Let n j denote the number of
subjects at the j-th level and π j the corresponding response rate. The total number of subjects N = ∑

n j .
The number of positive responses, Y j , has a binomial distribution B(n j , π j ) and the Y j , j = 1, . . . , J ,
are independent. Cochran (1954) and Armitage (1955) proposed a test of monotonically increasing trend,
where the null hypothesis is

H0: π1 = π2 = · · · = πJ

and the alternative is increasing trend

H1: π1 � π2 � · · · � πJ ,
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Table 1. Dose level and number of positive responses

Dose level x1 . . . x j . . . xJ
Number of subjects for each dose level n1 . . . n j . . . n J
Number of positive responses Y1 . . . Y j . . . YJ

with at least one strict inequality. The standardized Cochran–Armitage (CA) test statistic is

ZCA = T[
V̂ar(T )

] 1
2

=
∑J

j=1 x j (Y j − n j π̂)[
π̂(1 − π̂)

∑J
j=1 n j (x j − x̄)2

] 1
2

, (1.1)

where π̂ = ∑J
j=0 Y j/

∑J
j=1 n j and x̄ = ∑J

j=1 n j x j/
∑J

j=1 n j . This test statistic is in the class of C(α)
statistics discussed by Cox and Hinkley (1974, pp. 323–325). Under H0, ZCA has an asymptotic standard
normal distribution for large n j . Typically, the response probabilities π = (π1, π2, . . . , πJ ) are modeled
as π j = H(α + βx j ), where H(·) is a monotone, twice differentiable function. Cox (1958) showed that
CA trend test is the large sample approximation to the uniformly most powerful unbiased test against
alternatives for any such H(·) function.

In observational studies, an apparent association between exposure X and response R may arise from
an confounding variable U , the true causal agent, which is simultaneously related to the exposure. In this
situation, the trend test of the association for Table 1 would then be misleading. Cornfield et al. (1959),
Gastwirth (1988, 1992), Gastwirth et al. (1998), Rosenbaum and Krieger (1990), Rosenbaum and Rubin
(1983) and Rosenbaum (2002) discussed sensitivity analysis with unobserved variables in various settings.
In dose–response studies, there are multiple dose levels and it is natural to model the conditional distribu-
tion of U given the dose level X . In this paper, we extend the technique of sensitivity analysis to the trend
test in 2 × J tables and apply it to data sets from epidemiologic studies. The analysis complements that
of Rosenbaum (2003) who considered exposures that were measured on a continuous scale.

2. SENSITIVITY OF TREND TESTS TO AN UNOBSERVED VARIABLE

If one had observed the complete data, i.e. the treatment X , the response R and the confounder U , an
unbiased estimate of the treatment effect is obtained by controlling for U . The response probability is
usually modeled by a logistic regression,

π(U, X) = P(R = 1|U, X) = exp(α + β X + γU )

1 + exp(α + β X + γU )
. (2.1)

The effects of X and U on the response R are indicated by β and γ , which are called “strength” param-
eters. The test of interest is that whether the treatment has no effect on the response, i.e. H0: β = 0.
When the variable U is unobserved or omitted from the analysis, we only observe the data shown in Table
1 and fit the reduced logistic model

π∗(X) = exp(α∗ + β∗ X)

1 + exp(α∗ + β∗ X)
. (2.2)

The apparent effect of X is measured by β∗ and the CA test (1.1) is actually testing the hypothesis
H0: β∗ = 0. When U is a confounder, the test would be biased for testing whether there is a treatment
effect H0: β = 0.

In order to adjust the trend test for the effect of U , the association between U and X should be
considered. If we know the conditional distribution of the unobserved variable U given the treatment
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level x j , e.g. the proportion wu| j = P(U = u|X = x j ) if U is categorical or the density f (u|x j ) if
U is continuous, we can incorporate such information to calculate the marginal response probabilities
P(R = 1|X = x j ). Otherwise, we may assume a range of possible models for the association between
the unobserved variable and the treatment. The association is modeled by the conditional distribution of
U given the level of X (Rosenbaum, 1989)

f (u|x) = exp[τ(x) + ξ(u) + δux], (2.3)

where ξ(u) is an unknown function, τ(x) is a normalizing constant. If δ �= 0, X and U are not independent,
and the ‘imbalance’ parameter δ indicates the association between X and U .

According to model (2.3), U can be either a categorical or a continuous variable. When U is an ordinal
categorical variable taking values 0, . . . , K , then τ(x) = − log{∑K

u=0 exp(ξ(u) + δxu)} and

f (u|x) = P(U = u|X = x) = exp(λu + δxu)

1 + ∑K
k=1 exp(λk + δxk)

, u = 0, . . . , K , (2.4)

where λk = ξ(k) − ξ(0), k = 0, . . . , K . When K = 1, U is a binary variable. Model (2.3) also applies
when U is normally distributed. Then τ(x) = − 1

2 (λ + δx)2, ξ(u) = λu − 1
2 u2 − 1

2 log(2π) and

f (u|x) = φ(u|λ + δx, 1), (2.5)

where φ(·|a, b) is the density function of a normal distribution with mean a and variance b.
Because the confounder U is omitted, we only observe the marginal response probabilities at dose

level x j , P(R = 1|X = x j , β). These observed probabilities, denoted by π
(β)
j (γ, δ), j = 1, . . . , J ,

depend on the true treatment effect β as well as the ‘imbalance’ parameter δ and ‘strength’ parameter γ .
For simplicity of exposition, we write them as π

(β)
j . Thus, the response probabilities under the null

hypothesis H0: β = 0 are denoted by π
(0)
j .

2.1 Some properties of π
(β)
j and ZCA when the confounder U is omitted

If the unobserved confounder U is a categorical variable, the response probability at level x j

π
(β)
j =

K∑
u=0

P(R = 1|X = x j , U = u)P(U = u|X = x j ). (2.6)

When U is continuous with density f (u|x j ) at level x j , then

π
(β)
j =

∫ ∞

−∞
P(R = 1|X = x j , U = u) f (u|x j ) du. (2.7)

Because U is not observed, the likelihood for the observed 2 × J contingency table is

L
(
π

(β)
1 , . . . , π

(β)
J

∣∣X, Y
)

=
J∏

j=1

(
n j

Y j

) (
π

(β)
j

)Y j
(

1 − π
(β)
j

)n j −Y j
. (2.8)

Next, we prove a theorem about the observed response probabilities π
(0)
j under the null hypothesis

H0: β = 0 and show how the distribution of ZCA is affected by the unobserved variable U . The proofs
of the theorems are posted on the journal web site.
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THEOREM 2.1 Assume that the response probability satisfies model (2.1) and the relationship between
unobserved confounder U and treatment X is modeled by (2.3). If γ δ > 0, the observed response
probabilities {π(0)

j , j = 1, . . . , J } under the null H0: β = 0 satisfy

π
(0)
1 < · · · < π

(0)
j < · · · < π

(0)
J .

THEOREM 2.2 If U is a confounder, i.e. δγ �= 0, the CA test is no longer unbiased. The asymptotic
distribution of the CA trend test statistics ZCA is

P(ZCA � t) = 

( s0t − Bβ

σβ

)
, (2.9)

where s0 = [π̂(1−π̂)
∑J

j=1 n j (x j−x̄)2]
1
2 only depends on observed data and Bβ =∑J

j=1 n jπ
(β)
j (x j − x̄)

and σβ = [
∑J

j=1 π
(β)
j (1−π

(β)
j )n j (x j − x̄)2]

1
2 depend on observed data as well as the parameters (β, δ, γ ).

REMARK 1 Under null hypothesis of no exposure effect, the equality of marginal response probabilities
π

(0)
1 = · · · = π

(0)
J is true only when δγ = 0, i.e. the omitted variable U is not a confounder. In this case,

B0 = 0 and the limiting distribution of ZCA is standard normal 
(t).

REMARK 2 When δγ �= 0, the CA test is no longer unbiased as B0 �= 0 according to Theorem 2.1. When
δγ > 0, the observed data show spurious positive effect under the null hypothesis.

REMARK 3 In the asymptotic distribution (2.9), Bβ is of order N when π
(β)
j are not all equal and s0 and

σβ are of order
√

N . A simple example is helpful. Let xi = i and ni = N/3, i = 1, 2, 3. Then x̄ = 2

and s0 = [2π̂(1 − π̂)N/3]
1
2 is of order

√
N . If a confounder is omitted, then π

(β)
1 �= π

(β)
3 . Hence,

Bβ = (π
(β)
3 −π

(β)
1 )N/3 is of order N and σβ = {[π(β)

1 (1−π
(β)
1 )+π

(β)
3 (1−π

(β)
3 )]N/3} 1

2 is of order
√

N .
Similar to the Pitman efficiency, when the local alternatives βk converge to the null value 0 slowly, say like
1/ log log n, the limiting distribution of ZCA is no longer a standard normal, but a normal distribution with
non-zero mean, because of confounding; when the alternative β > 0 stays fixed as N → ∞, the power
goes to 1.

REMARK 4 If we use the rejection region {ZCA > Z1−α}, the true significance level and true power
of the test are 1 − 
(

s0 Z1−α−B0
σ0

) when the exposure has no effect, i.e. H0: β = 0. Let zCA be the
observed value of the CA trend test statistic ZCA, the true p-value and power of the one-sided trend test
are 1−
( s0zCA−B0

σ0
) and 
(

s0zCA−Bβ

σβ
), respectively. The power under the non-null case is useful when one

designs a study or calculates the power when a confounder is omitted. Yu and Gastwirth (2003) assessed
the power for the test of independence in a 2×2 table for the study of the spermicide effect on birth defects.

2.2 Sensitivity analysis for the CA trend test

Because an unobserved confounder may introduce a spurious treatment effect, thereby biasing the trend
test, it is desirable to assess the sensitivity of the test result under plausible assumptions about the effect
of X and U on the response R and the association between U and X . The relationship between R and
(X, U ) is specified by the “strength” parameters β and γ , respectively, in model (2.1). The association
between U and X is specified by conditional distribution f (u|x). Let ω = (ωu|1 = P(U = u|x = x1),
u = 0, . . . , K ) if U is categorical and ω be the mean of U at exposure level xi if U is continuous.
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If the conditional distribution of U given X is modeled by (2.4) or (2.5), the distribution is specified
by the “imbalance” parameters (ω, δ) (Appendix 4). The observed response probabilities π

(β)
j at exposure

level x j depend on both the “imbalance” parameters (ω, δ) and the “strength” parameters (β, γ ). For fixed

plausible values of (ω, δ, β, γ ), the maximum likelihood estimates (MLEs) of π
(β)
j can be obtained from

the likelihood (2.8). The estimates of Bβ and σβ in (2.9) will be obtained by substituting π̂
(β)
j for π

(β)
j .

Appendix 4 shows how to obtain the MLE of π
(β)
j given the distribution of U conditioning on X .

By changing the values of the parameters (ω, δ, β, γ ), we are able to assess the sensitivity of the trend
test ZCA to the unobserved variable U . The true p-value for testing H0: β = 0 can be calculated as

1 − 
( s0zCA−B̂0
σ̂0

) and the power under H1: β > 0 can be estimated as 
(
s0zCA−B̂β

σ̂β
).

3. APPLICATION

We apply the sensitivity analysis to a study of the risk of radiation exposure. The study investigates the
human minisatellite mutation rate after the Chernobyl accident (Dubrova, 1996). It has long been known
that high levels of radiation cause mutations—typically chromosomal breaks. However, there is little evi-
dence that ionizing radiation increases the general germline mutation rates for all genes in humans. Exam-
ination of mutations at minisatellite loci, which have a high base mutation rate, provides a more powerful
assay of mutation rate and makes it possible to detect a statistically significant increase in mutation rate
in a relative small sample size. For example an increase in germline mutation rate for minisatellites with
exposure to radiation has been demonstrated in mice (Dubrova et al., 1993).

The largest reported accidental release of radioactivity in history occurred at the Chernobyl nuclear
power station in Belarus on April 26, 1986. To determine its effect on germline mutation rates, Dubrova
et al. (1996) estimated the mutation rates for five minisatellite probes in children born to parents exposed
to the Chernobyl radiation and compared them to rates in matched, unexposed British families. For the
families in which all probes were scored, the control group had 23 mutations in 1491 scored bands,
whereas the exposed group had 49 mutations in 1615 scored bands. The relative risk of exposure, 1.97, is
statistically significant with p-value 0.004 obtained from Fisher’s exact test.

In addition, when the Belarus families are grouped according to median Cesium surface contamination
into those that experienced less contamination (surface contamination <6.8 Ci km−2) and those that ex-
perienced more (>6.8 Ci km−2), there is a statistically significant difference (p = 0.041) in estimated mu-
tation rates (0.026 and 0.035 between the low and high contaminated populations, respectively; Table 2).

Because of the robustness of equally spaced scores, i.e. 0 for the control group, 1 and 2 for the low
and high contamination groups are used for the CA trend test, which yields a more significant result
(p = 0.0014) than Fisher’s exact test. This increased trend indicates that the increase in mutation fre-
quency among offspring of irradiated parents may be a direct consequence of radiation exposure.

However, Kodaria et al. (1995) carried out a similar study in children from families exposed to atomic
bomb radiation in Japan. In contrast to Dubrova et al. (1996), they found very similar mutation rates in
exposed and control samples for the same minisatellites (12 mutations in 1111 bands for the exposed group
and 13 mutations in 1111 bands for the control group). Kodaira et al. (1995) suggested that a comparison
to a more appropriate matched control group is necessary to properly evaluate the effect of radiation on
human mutation rates. Furthermore, other non-radioactive contaminants from Chernobyl, such as heavy
metals, could be responsible for the observed, apparently dose-dependent increase in mutation rate.

Although one can no longer collect data about possible confounders, we can assess how sensitive
the conclusion based on the dose–response data might be to potential confounding factors. We assume
that another non-radioactive binary risk factor (U ) is causally related to the mutation and associated with
the radiation. First, we assume that there is an increasing trend in the prevalences of U in the control,
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Table 2. 137Cesium surface contamination and mutation rate

Control Low High
contamination contamination

Equal space score (X ) 0 1 2
Scored bands (n) 1491 809 806
Mutations (Y ) 23 21 28

low contamination and high contamination groups. Following the technique described in Section 2, the
response probability follows model (2.1) and the association between X and U is specified in model (2.4)
by the parameters (δ, ω).

We assume that the omitted factor is a risk factor that is more prevalent in the contaminated area and
the parameter δ ∈ {0.5, 1.0}. The prevalence of U in the control group is ω1|0 = {0.01, 0.05, 0.10, 0.20}.
The odds ratio of the confounder U is indicated by exp(γ ). The prevalences of U in the exposure group
are calculated using the parameters (δ, ω1|0) (see Appendix A). The p-values of the trend test for various
situations are summarized in Table 3. The last column shows the required odds ratio for U (eγ ) to raise
the p-value to 0.05. Based on Table 3, the trend test is sensitive to a confounding factor of modest risk
(eγ � 3) which is not balanced across three groups. For example in Case 6, when the prevalence of U
in the control group ω1|0 = 0.10, the imbalance parameter δ = 1.0 and the odds ratio of U is 3.0, the
adjusted p-value is 0.096, which is not significant. This means that the finding that ionizing radiation
increases the general germiline mutation rates could be questioned and the dose-dependent mutation rate
found by Dubrova et al. (1993) might be due to another factor.

Notice, however, that the requirement that the prevalences of U increase in the same order across the
three groups is a strong one. Following the suggestion by Kodaira et al. (1995), it may be more reasonable
to assume that the prevalence of U is the same in both exposed groups, i.e.

f = Pr(U = 1|X = 1 or 2) > Pr(U = 1|X = 0) = ω1|0.

Table 4 presents a sensitivity analysis based on the assumption that the prevalence of U in both exposed
groups, f , is the same and exceeds its prevalence, ω1|0, in the control (British) group. To be comparable

Table 3. The p-values of the trend test with different values of (ω, δ, γ ) for the unobserved variable and
required odds ratio of U to raise the p-value to 0.05

Case δ Prevalences of confounder U Odds ratio of U : exp(γ ) Required odds ratio
for p = 0.05Control Low High Average 1.5 3 6 9

ω1|0 ω1|1 ω1|2 f Adjusted p-value

1 0.5 0.01 0.02 0.02 0.02 0.002 0.002 0.003 0.004 84.5
2 1.0 0.01 0.03 0.07 0.05 0.002 0.005 0.017 0.040 10.0
3 0.5 0.05 0.08 0.13 0.11 0.002 0.006 0.022 0.047 9.3
4 1.0 0.05 0.13 0.29 0.21 0.005 0.047 0.280 0.526 3.1
5 0.5 0.10 0.15 0.23 0.19 0.003 0.011 0.046 0.090 6.3
6 1.0 0.10 0.23 0.45 0.34 0.008 0.096 0.423 0.644 2.5
7 0.5 0.20 0.29 0.40 0.34 0.004 0.020 0.068 0.113 4.9
8 1.0 0.20 0.40 0.63 0.51 0.010 0.112 0.376 0.530 2.3
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Table 4. The p-values of the trend test with different prevalences of the omitted risk factor in the control
and exposed groups and the required odds ratio of U to raise the p-value to 0.05

Case Prevalence of U Odds ratio of U : exp(γ ) Required odds ratio
for p = 0.05Control Exposed 1.5 3 6 9

ω1|0 f Adjusted p-value

1 0.01 0.02 0.001 0.002 0.002 0.003 258.4
2 0.01 0.05 0.002 0.003 0.008 0.016 17.0
3 0.05 0.11 0.002 0.004 0.012 0.023 15.1
4 0.05 0.21 0.003 0.020 0.111 0.239 4.3
5 0.10 0.19 0.002 0.007 0.021 0.039 10.8
6 0.10 0.34 0.005 0.041 0.192 0.341 3.2
7 0.20 0.34 0.003 0.011 0.034 0.054 8.4
8 0.20 0.51 0.006 0.054 0.194 0.297 2.9

with the results in Table 3, we assume that (n1 +n2) f = n1ω1|1 +n2ω1|2, where n1 and n2 are the number
of scored bands from the exposed families in both low and high contamination groups.

Comparing Tables 3 and 4, we see that if the prevalences of risk factor U increase with contamination
level, the trend test is more sensitive than when U has equal prevalence in both contamination groups.
For example for Case 6, if ω1|0 = 0.10 and exp(γ ) = 3, the p-values of the trend test are 0.096 and
0.041 in Tables 3 and 4, respectively. Thus, the proper sensitivity model may depend on subject matter
considerations.

4. DISCUSSION

The paper utilizes an approach similar to that of Rosenbaum (2002) to develop a sensitivity analysis for
testing data for a dose–response or trend. The main difference from previous approaches (Rosenbaum and
Rubin, 1983; Rosenbaum, 2002) is that we follow Cornfield et al. (1959) who consider the conditional
distribution of the unobserved variable U given the dose or exposure level X, rather than the propensity
score. The method is illustrated on a data set concerned with the effect of radiation. In the case of the
Chernobyl accident, the model of association between the unobserved confounder U and the exposure
level X is shown to have a substantial impact on the sensitivity analysis.
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APPENDIX A

Conditional distribution of U given X is specified by (ω, δ) when the association model is (2.4) or (2.5)

When U is a categorical variable, the conditional distribution of U given X is specified by {ωu| j , u =
0, . . . , K , j = 1, . . . , J } and ω = (ω0|1, . . . , ωK |1) are the distribution of U at exposure level x1. Model
(2.4) implies that

ωu|1 = P(U = u|X = x1) = eλu+δx1

1 + ∑k
k=1 eλk+δx1

, u = 1, . . . , K .
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Hence, λu = log(
ωu|1
ω0|1 ) − δxi and ωu| j can be obtained by plugging λu into (2.4). When U is binary,

λ1 = log(
ωu|1

1−ωu|1 ).
When U is normal, the conditional distribution of U given X is φ(λ+δx, 1) and ω is the mean of U at

exposure level xi . Hence, λ = ω−δx1 and the conditional distribution is f (u|x j ) = φ(ω+δ(x j −x1), 1).

APPENDIX B

Maximum likelihood estimation of π
(β)
j given the conditional distribution

ωu| j = P(U = u|X = x j ) or f (u|x j )

The loglikelihood for the observed 2 × J table from the dose–response study is


(
π

(β)
1 , . . . , π

(β)
J |X, Y

)
=

J∑
j=1

log

(
n j !

Y j !(n j − Y j )!

)
+

J∑
j=1

{
Y j log π

(β)
j + (n j − Y j ) log(1 − π

(β)
j )

}
.

The response rates {π(β)
j , j = 1, . . . , J } are functions of α for fixed values of (β, γ ) and known distri-

bution f (u|x j ). The MLE of α can be obtained by solving

∂(π
(β)
1 , . . . , π

(β)
J |X, Y )

∂α
=

J∑
j=1

∂π
(β)
j

∂α

(
Y j

π
(β)
j

− n j − Y j

1 − π
(β)
j

)
= 0. (B.1)

The MLEs of π
(β)
j , π̂

(β)
j are obtained by plugging α̂ into (2.6) or (2.7).

If U is categorical, the distribution of U conditioning on X is given by {ωu| j , u = 0, . . . , K ,
j = 1, . . . , J }. Hence,

∂π
(β)
j

∂α
=

K∑
u=0

(
1 − ωu| j

) eα+βx j +γ u

(1 + eα+βx j +γ u)2
.

If U is continuous with conditional distribution f (u|x j ), then

∂π
(β)
j

∂α
=

∫ ∞

−∞
eα+βx j +γ u

(1 + eα+βx j +γ u)2
f (u|x j ) du.

In both situations, it can be shown that

lim
α→−∞ π

(β)
j = lim

α→−∞
∂π

(β)
j

∂α
= lim

α→∞
∂π

(β)
j

∂α
= 0 and lim

α→∞ π
(β)
j = lim

α→−∞

∂π
(β)
j

∂α

π
(β)
j

= lim
α→∞

∂π
(β)
j

∂α

1 − π
(β)
j

= 1.

Hence,

lim
α→−∞

∂(π
(β)
1 , . . . , π

(β)
J |X, Y )

∂α
=

J∑
j=1

Y j and lim
α→∞

∂(π
(β)
1 , . . . , π

(β)
J |X, Y )

∂α
= −

J∑
j=1

(n j − Y j ).

Because limα→−∞
∂(π

(β)
1 ,...,π

(β)
J |X,Y )

∂α is a polynomial function of eα , hence is continuous in α, (B.1) al-
ways has a real solution. The maximum likelihood estimate of α can be obtained using MAPLE language
α̂ := fsolve( ∂

∂α , α).
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